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ABSTRACT

It is shown how to construct a modified version SUB~ of a (presumably

efficient) subroutine SUB , for solving the linear system A .x = b ,

so that the linear system

can be solved by just one call to each of the routines SUB~ , il,. . . ,k. Poly-

nomial interpolation arid spline interpolation in several variables are given as

examples.
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SIGN IFICANCE AND EXPLANATION

The tensor product of l inear approximation scheme s is a very convenient

mat~iematical  construct to make e f f i c i e n t  mul t ivar ia t~ approximation schemes out

of u n i v a r i a t e  ones. For example , we might know that  the coef f ic ien t  vector a

for the polynomial

p(x) ~ a . p. (x)

which agrees with the function f at t 1, . . .  ,t can be computed as

a =  B
~ 

( f ( t . ) )

Then we know that

p ( x ,y )  = ~ a. .p. (x)p.(y)
ii ~

is a polynomial which agrees with the function f at all the points (t
~
.u.) of

a rectangular grid provided the coeff ic ient  matrix (a . ) is computed from the
lj

data matr ix ( f ( t . , u . ) )  by
1

(a . . )  = (B ~~B ) ( f ( t . , u . ) )  : B ( f ( t ., u . ) ) ( B  ) T
13 1 3  t 1 3  U

Such a construction can also be used to obtain interpolants to functions of three

or more variables, but explicit expressions for

(B ®B ®. ..® B )(f(t .,u ,...,z ))
t u z i j  n

in terms of ordinary matrix multiplication are harder to come by and implement.

The report proposes a simple way of modifying a subroutine for calculating the

coefficient vector a from univariate data so that the construction of a tensor

product interpolant reduces to calling these modified univariate routines in

sequence . Somewhat surprisingly, this idea seems not to have been noticed before .

It makes the construction and evaluation of tensor product approximarits an easy thing.

The responsibi l i ty  for the wording and views expressed in th is  descriptive summary
lies wi th  MRC , and not with the author of this report .
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EFFICIENT COMPUTER MP~NIPULATION

)F TENSOR PRODUCTS

Carl de Boor

In [3] , V. Pereyra and G. Scherer discuss the numerical solution of a linear svste.m of

the form

(A
l~~~~

...®A
k
)x = b  (I)

with A , an invertible matrix of order n ., i=l k, and , correspondingly, both x and

b k—dimensional arrays, of size n
1 

x n
2 

x •~ Such systems arise naturally when font-

ing tensor products of univariate interpolation schemes.

Pereyra and Scherer propose to store arrays such as x and b with the last index

running fastest and then have a scheme of applying A~~~, Iç~~ and so on down to and includ-

ing A~
’, appropriately restoring the intermediate information so that application of

involves only repeated ordinary matrix multiplication to a vector stored in consecutive

locations in memory. When , as is more reasonable , application of U .
1
L.

1 rather  than of

A .
1 

is wan ted , with LU. a triangular factorization for A ., a further complication

arises and is dealt with .

It is the purpose of this note to describe a different procedure which I have used for

some t ime and which is more direct and simpler than the Pereyra—Scherer procedure appears to

be.

We assume that, for each i, we have available a Fortran subroutine

SUB .(b ,n ,x)

which solves the i-th linear system A .x = b (of order n - n . ) for x, given b . Pre-

suuiably , the routine does this in an efficient way, taking advantage of any special

structure A. might have such as bandedness , positive definiteness etc .

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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We further assume that the k—dimensional arrays x and b are (to be) stored in

For tran f a sh ion , i.e.,

x(j ,i
2 

1
k
) = X ( i

1 
+n

1
(i
2
—l -+-n (i

3
—l + ... +nk l

(i
k
l)..)))

if we refer to x also as an equivalent one—dimensional array .

The following simple procedure will then lead to an efficient way for solving (1) : For

each i , enlarge the subroutine SUB . to a subroutine

SUB (b,n,m,x )
1.

which solves simultaneously A .x = b for is given right sides b(.,l ) ,  b (’,2) b(~~,m),

each of length n = n ., and stores the corresponding solutions in x (l,~~) ,  x ( 2 ,’) x (m ,~~).

Thus , the dimension statement for the arguments b and ~c in SUE reads

DIMENSION b ( n ,rn) , x (m,n)

and the change otherwise consists in putting every statement involving b or x appropriate-

ly into a DO loop. In this, care should be taken to leave statements which do not depend on

the particular right side outside such loops.

Many library routines for specific linear problems already provide this facility for

dealing with several right sides in one cal1 , since the work in solving A x  = b for an

additional right side b is usually much less than the work for solving such a system the

first time . But such routines return the solution corresponding to the j—th column b ( ,j)

of the input array customarily in the j-th ~column of the output array x and not, as I pro-

pose here , in the j—th row.

Lemma . For i=1 k, let SUB be an expanded version, as described, of the routine

SUB . for solving A .x = b, and set
1 1

N fl *n *

Then, the following statements

-2—
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b :=b$ =0 =

CALL SU~~~(b~~. n 1
, N/n

1
, b

1
)

CALL SUB (b
1 , n

2
, N/n

a
, 
~~~

CALL SUB
)~

(b
k l . nk. M/n

k
. 
~k

1

will produce the solution x of (1)

Proof .  Let be the k—dimensional array

(A~~ ~~~ ... ~ A .
1 
~~ 1 ® ... ~~~ l ) b

i 0  k. Then 

1 
( 2 )

= A . 
~ i—l~~~l ~i l ~ ‘

~~i+l 

and our assertion is proved if we can establish that = 

~~~ 
We prove this by showing

that, for all i, b . as generated by the succession of calls above is related to x . ink 1 =1

the following way :

If b . is interpreted as a k-dimensional Fortran array, of dimension

(n . n ,n n .), thenk 1 i

= 

~~~~ ~k~~
’ ~ 2! ~~, 

.

for i=O k. For i = k , (3) is indeed the desired statement that =

Now , (3) holds for i=0 because of the initial assignment b
0 

: b. Assuming (3) to

hold for i<v, we consider the action of the

CALL SUB’(b ,n ,N/n ,b
v =v-l v v= v

SUB ’ considers b to be a two-dimensional array, b say , of dimension (n ,N/n )V v l  v v

Thus , wi th

—3—
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#n ( 3  — .1 3... #n ( j  — )  + +~~ C — 1 ) . . . )
v+1 v+l v+2 k 1 v-2 v-i

we have

b(.,s) = 

~~~~~~~~~~~~~~~~~~~~~ ~k
’1 l 

4 )
= 

~v—i~~~i ~v—l
’

by induction hypothesis. SUB then applies A
1 

to each of these m = N/ny n
v
_Vec tors

b(.,s ) ,  thus obtaining the corresponding n —vector

~v~~ l ~v—1
’ ‘ ‘3 v+l 

by ( 2 )  and (4) , and stores this vector in

x (s.’) = b (s + (N/n
~
)( ‘ -1))

= 

~v~~ v+1 
+n 

l~~ 2
1 +...+n

~~~2
(j
~~~,

_l)...) + (N /n)( .

= 

~v~~ v+i 3k ’~~l 
‘‘

~~~~~
‘

which proves (3) for i = v and so advances the induction hypothesis; Q.E.D.

We introduced the auxiliary arrays only for argument’s sake . In calculations, two arra”s,

say 
~ l 

and 
~2

’ are s u f f i cient , w i th b
1 

serving in place of all b . with i odd, and

~2 
serving for all the others.

Also, in typical situations, the various subroutines 5
~
B
k 

are , in fact,

just one routine called with additional arguments which differ with j. In such a case , only

one extended version has to be written .

Finally, we put the above discussion in terms of solving a linear system , i.e., in terms

of premultiplying a given vector by the inverse of a given matrix. We did this in order to

make the point that we do not require the matrix by which we wish to premultiply  to be pre-

sent explicitly. Any Fortran subprogram SUB . (b,x) which has the effect of forming

x B .b for given b can serve as a basis for an extended version SUB (b ,n,m,x ) suitable

for the calculation of (B
1 

l~ ... t~) B~ )b, and the matrices B . need not be square . We s~ et~

this sli ght extension of the Lemma as a corollary for  the record .

—4—
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:or~~H i r . .  !-~~z i i .  i~, i t  13 b o a  (n . , r ) — m a t r i x , and .1~. t ~Ui~ Ih , r ,m , x , r )

subr ou t  t u e  wh ~~- u f o r  t = l  • m , form s t h e  r . — vec tor  U b (  . , j )  ( i i  nome m a r e  r )
_ _ - - —_____ - _____ — 1 - 1 —

from the n —v ect or  b ( . , ] ) ,  and stores i t  in x ( j , . ) .  Then ,  the  f o ll ow i n g  s t a t e m e n t s

m : n *. fl

CALL SUB 1(b 0 , n
1

, m , b1. r 1
)

• m := m*r
1
/n

2

CALL SUB (b
1
, n

2
, tfl~ ~ 2 ’ r2 )

m := m*r 2/n 3

CALL SUB~~(b 
l~ ~

ik~ m , 
~k ’ rk

)

‘ x . b
k

form the k—dimens iona l  ar ray x = (B
l~~~ 

... 
~~~ 

B~~)b .

It  is not even necessary tha t  B . be a ma t r ix ,  i . e . ,  a two—dimensional  array . The more

general situation in which B . is a linear map which associates s —dimensional arra - wit -

t .—dimensional arrays is covered by the corollary as well since we can always interpret such

5.-dime nsional and t
~
_dimensiona1 arrays Fortran fashion as equivalent one—dimensional ari a-. -- -

We give some simple examples in the next section .

Tensor products of univariate interpolation schemes. The fol lowing material eon, ni n e

tensor products of univariate interpolation schemes is well known and is ment ioned here o n ) - . -

in order to illustrate the use and usefulness of the simple idea expounded earlier. (A

simple account giving proofs and details can be found , e.g., in [1]. )

The construction of a (univariate) linear interpolant g to some function f usuall--

invo lves the calculation of the coefficients a = (a.) in a representation

— c—
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g = a - ~ .

for the interpolarit from certain information (A f) about f. Here, each is a l i n ear

func t iona l ,  e . g . ,

(r. )
A . f  = f(x.) or ~. f = f ‘ (x.) or ~ . f = f p ( x ) f ( x ) d x  etc .

and g is so constructed t h a t

A .g = A . f , al l  i
1 1

At the level of the present discussion , there is no reason to require the representation for

g to be irredundant , i.e., to require the sequence (p . ) to be linearly independent. All

that is necessary is the assumption tha t

a = B(A. f)

for some matrix B. The matrix B is commonly not known explicitly (although it could . of

course , be determined) . Rather, some procedure or subprogram SUB is available which trans-

forms the vector (~\f) of data appropriately into the vector a of coefficients.

For example, consider the construction of the polynomial p = Pf 
of degree < n which

agrees wi th f at the n distinct points x
1 

x~ . In its Newton form, Pf 
looks like

p (xl = ~ [x. x ]f .Ff (x — x.) (5)
£ 

i~~l 
1 n j=i+l J

with the coefficient [x. x )f the so—called divided difference for f at the points

x . x , i 1  n, i.e.,
1 fl

f(x.) , I = j
Cx . x .]f :.~~~~ 

1 
(6) 

x.)f — x . 
1
]f)/(x ,—x.), j < ,

These coefficients can therefore be determined as final entries in a so—called divided

difference table , for instance as in the following subprogram

-6—
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i - :  ~t: poLi~ -r CX , I- • N )

L u)  MC Mu 1 -uL X N )  , F ( N )

= N — i

IF’ (NM1 . i r .  )1 ) RETURN

DO 10 K = l ,NM I

NMK = N-K

DO l~ t=2 ,NME

1-) F(I) = ( F ( I - $ - l )  — F ( I ) ) / ( X ( I + K )  — XCI ))

• END RETURN

Here , the array F contains F(i) = f (x ), 1=1 n , on input and F(i) = lx
1 

x ) f .

i=l n , on output. (For detai ls concerning divided differences and the Newton form (5),

see , e.g., [2].)

Once the c o e f f i c i e n t  vector a in the representation ~~~~~~ for t he  in terpolant  q

has been determined , one may eva lua te  g in various ways .  T y p i c a l l y ,  one then  wants to f ind

Ag for various linear functionals A such as Ag = g(x), some x , or Ag = g~~
1 (x) , or

Ag = f 
~g for some ~- , etc. . All of these values can be obtained from the vector

a = (a .) by applying to it a matrix consisting of just one row , viz, the matrix

~~~~~~~~ ~ 2 ’ 1. Thus eva lua t ion  of the interpo lan t at some l inear  f u n c t i o n a l  A is j u s t

another linear procedure or subprogram which applies some matrix B to the vector a.

For example , the evaluat ion  of the in terpola t ing polynomial ( 5 )  at some poin t x = ARC

proceeds customari ly  by Nested Mul t ip l i ca t ion, as in the fo l lowing  func t ion  subprogram

FUNCTION POLVAL C X , F , N , A RC)

DIMENSION X(N) , F ( N )

POLVAL = F(1)

IF (N .LE . 1) RETURN

DO 10 K=l , N

10 POLVAL = POLVAL* ( A R G_ X ( K ) ) + F ( K )

RETURN
END

— 7—
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Not e t h a t .  oric~- again , the matrix H to be a p p l i - d  to  t t ~~- c i e f f i e r  - I ’  v o u ; t o t  a C ‘

a r r a y  F) i s no t formed • - x r - i ; c i t i - , ’ .

S u } ) i o u e  now that we have , for each of the k independen t  v a r i a b l e s  t
1 

t )~ a

linear interpolation scheme . This means that , for r=l k , we have a matrix ‘
r ~~

associates with each data vector (i~ f) a coefficient vector (a
r

C = B C - ; r v l n q  t u ~

i n t e r p olant  q = 
r 

for f = f ( t ) .  ~~rther , for all appro~ r1ate integer vectors

= i
k

) .  let ., . be a l i n e a r  f u n c t i o n a l  on some appropr ia te  class of f u n c tio n s  f

of k variables for which

~~ f = (~~ f ) ( ~~ f ) . . . ( ; k f
‘1 1 12 2 1k k

whenever

f ( t
1 t

k
) = f l

(t
l

) f
2

( t
2

) . . . f
k

( t )  , a l l  t
1 

b
For example , if k = 3 and \ r f = f ( c i  ) \rf = f ( ~ ) and A r f = J r f ) ~~) d E  then1 r 2 r 3 a

r

A (1 1 1) f : f ( ~~1~~a 2 . -~ 3
)

: ~~3 (a/~ t2
)
2
f(~~1

,B
2
,t

3
)dt

3

A (2 2 1) f : ( A 4
/3t ~ At~~) f ( 8 1

, ) 3
2 ,ci 3

)

would serve . Also , let

~
j(tl

~~
....t

k
) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Then we can construct an in terpolant

for a funct ion  f of the k var iables  t
1~~•~~ ~

tk as fol lows : Calcu la te  the k — d i m e n s i o n a l

array a = (a.) as

a = (B
1 ~~~ . . , 

~ 
8
k

1 ~

— A —

I
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from the k—dimensional a r r a y  C - f) of d a t a .  This function g is t h u  r n d ~ .-ui or .  r r .~ - - r —

polan t to f in the sense that

A .g = A . f  , al l i

The ca lcula t ion of the coefficient array a is , of course , ea s i l y effected as d e t - c r i r e d  ir .

t he  corol la ry  obove .

To fo l l ow  up on the examp le of polynomial  i n t e r p o l a t i o n , an app rop r i a t e ly  ext e r .d -d .‘~-r-

sion POLNTE of the subprogram POLINT would re’)ulre a separate output array, D say , for

the calculated divided differences. Otherwise , only the statement labelled 10,

10 F(I) = (1(1+1) — F ( I ) ) / ( X ( I P K )  — XCI) )

needs to be put i n to  an add i t iona l  loop over the  data sets , w i t h  the difference X (IPK) — X (1)

ca lcu la ted  outside tha t  loop, of course . We get

SUB ROUTINE POLNTE CX , F, N , N , D)

DIMENSION X ( N ) , F ( N , M ) , D ( M , N)

DO 5 I 1 ,N

DO 5 J = l , M

5 0(3,1) = F ( I , J )

NM 1 = N-l

IF (NM 1 .LE . 0) RETURN

DO 10 K=l ,Nill

NNX N-l(

DO 10 I=1 ,NMI(

01FF = X (I+K) — X (I)

DO 10 J= 1 , M

10 D ( J , I)  = ( D ( J , I + l ) — D ( J , I ) ) / D I F F

RETURN

END

— 9 —
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Note t h a t  t h i s  routine functions appropriately even for M = 1 , the only difference corn-

Pared to POLINT being that the output is now to be found in D and not in F. Note

f u r t h e r  t h a t  it takes M(N—l) /2 adds and divides per data set to form 3(A .f) . Since the

m a t r i x  is upper t r ia n g u l a r  in  t h i s  case , expl ic i t  application of B by backsubs t i tu—

tiori would take no fewer operations and Would require the generation and storage of B (or

its inverse)

Now , to i l lustrate the lemma and i ts corol lary ,  suppose that we require the polynomial

in t e rpo lan t  p = p ( x , y , z) to data

f(x .,y .,z ) , i=l ri j 1, . . . , n k l  , . . .,  n1 j  k x y z

We load f ( x . . y .
~~

zk ) into F ( i ,j , k ) ,  x.  i n to  X (i), y. into Y(j) and 5
k 

in to Z ( k ) ,

for a l l  appropr ia te  i ,j , k .  Then

N ; n *fl *n
x y z

CALL POLNTE CX , F, n , N/n , 0)
x x

CALL POLNTE (Y , D, n , N/n , F)
V y

CALL POLNTE (Z , F, n , N/n , D)
Z Z

to get the appropriate polynomial coeff ic ients  of the polynomial interpolant p into the

3-dimensional array 0.

If we wish to evaluate this interpolant at some point ~~~~~~~~~ we have to procure an

extended version of the function routine POLVAL. The output for such a routine will consist

now of more than one number, wo must therefore give up on having a function . Otherwise , it

is again only the assi gnment s ta tement  POLVAL = F ( l )  and statement 10 which need to be put

into a loop over the data sets. Here is an extended version POLVLE of POLVAL.

—1 0—
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SUBROUTINE POLVLE C X ,  D , N , M , ARG , VALUE )

DIMENSION X ( N )  , D ( N , M) , VALU E (M)

DO 5 J=l ,M

5 VALUE ( J )  = 0( 1 ,3)

* 
IF (N .LE . 1) RETURN

DO 10 K=2 ,N

FACTOR AR G - X (X)

DO 10 J=l ,M

10 VALCJE(J) = VALUE (J ) *FACTOR + D(~< ,.fl

RETU RN

END

Now , to f ind  ~~~~~~~~

CALL POLVLE (X, 0, n , N/n , x , TEMP1)x x -

CALL POLVLE (V . TE MP 1, n , n , c~, TEMP2)y z

CALL POLVLE (Z, TFJ’jP2, 1, ~~, ANSWER)

to get p ( x ,~~,i) = ANSWER. Note that TENP1 must be of size n *n and contains the

necessary information to evaluate the bivariate polynomial p (Ly,z) for any choice of y

and z. Again , TEMP 2 is of size n and contains the appropriate coeff ic ients  of the

polynomial p (~~,~~,z) in the single variable z. In pazticular, if p is to evaluated at

all points of a regular grid , it is most efficient to evaluate p along lines paral lel  to

the z— ax i s .

As an example of some of the d i f f i c u l t i e s  one might encounter , we now discuss briefly

osculatory polynomial interpolation . Here , the interpolant is again of the form (5), hut

now some of the interpolat ion points x 1 X might coincide. This requires an exten-

sion of (6) which reads as follows :

(x x . J f  := f
(3~~~) (x )/(j—i) I , if x.  = . . . = x .  . (6a)

By i n s i s t i ng  that , for g iven lata points x1 
x ,  we have

—11—
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x . = x .  impl ies  x .  = x .  = ... = x .
1 3 1 1+1 3

(6)  and (6a) cover all eventualiri”s . The point of this e x t e r c - i r  i~ that now c S r’- .

w i t h  f ;n the  sense tha t

in case the number z St-n or (at least) r

t ime s in  the sequence x
1 

x

Th i s  exp la in s  the term “oscu la to ry” .

The fo l lowing program for the cons t ruc t ion  of the c o e f f i ci *- r t~ in (5) is based on (6)

and (6a)  and can be found , in somewhat d i f f e r e nt notat ion , in ( 2 ] .

SUBROUTINE POLOSC C X ,  F , N)

C INPUT MUST SATI SFY THE FOLLOWING .

C IF X(I-l) •NE . XCI) = X ( I + 3 )  .NE. X(I+3+l), THEN

C X(I+L) = XCI) AND F(I+L) = CD**L)F(X(I)), L O  3

• C (HERE , X(O), X(N+l) .NE. X(I), 1=1 N, B? DEFINITION.)

DIMENSI ON X ( N ) ,F(N)

NM1 = N— l

IF CNM1) .LE. 0) RETURN

DO 10 K= 1 ,NMI

FLOATK=I(

NMK = N-K

FLAST = F(1)

DO 9 r=l ,NMK

DX = XCI +K) — XCI)

IF (DX .EO. 0.) GO TO 7

FCI) = (F(I+l) — FLAST)/DX

FLAST = F(I+1)

GO TO 9 C

7 F C I )  = F(I+l)/FLOATK

9 CONTINUE

10 F(NM K+l )  = FLAST

RETURN

END

The construction of an efficient extension of POLOSC is made difficult by the fact

that  the local variable FLAST depends on the data F but is active thrc’-.rgh various
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loop over t h e  v a r i ’u u - ;  da ta  ~~~~~ One way out is to make FLAST an array of l e ro ) t . N ,

ei ther local or as art argument , which then requires the four groups of statements

* 
PLAST = F (l )

F (Il = (F(Ii-l) — F ( I ) ) / D x  FIAST = F(I+l)

F(I) = FCI+1)/FLCiATK

F(NMK+ll = F’LAST

each be put into a loop over the different data sets.

An alternative way consists in a reorganization of the entire calculation which avoids

the temporary saving of terms which  depend on F, possibly at the cost of a slight increase

in F-independent work. For the record , here is such a subprogram . Note that  the inpu t  in-

formation in F is to be arranged differently , too.

~~ SUBROUTINE POLSCN (X , F, N)

C INPUT MUS T SATISFY THE FOLLOWING.

C IF X ( I - l )  .ME. X C I )  = X ( I + J )  ,NE . X ( I + J + 1 ) ,  THEN

C X ( I +L) = X C I )  AND F ( I+ L )  = ( D * * ( 3 _ L ) ) F ( X ( I ) ) ,  L= L) 3.

C (HERE , BY DEFINITION, X ( O ) , X (N+l) .NE. XCI),I=l N.)

DIMENSION X(N),F (N)

NN1 N-l

IF CN M 1 .LE . 0) RETURN

DO 3 NEXTP1=2,N

IF (X(NEXTP1) .ME . X (l)) GO TO 4

3 CONTINUE

NEXTP1 = N+l

4 DO 10 K l , NM 1

NEXT = NEXTP 1-l

FLOATK = FLOAT(K)

NMK = N-K

DO 9 I=l ,NMK

IF (NEXT .EQ . I) GO TO 5

F(I) = F(I)/FLOATI(

GO TO 9

— l 3—
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5 NEXT = NEXT +l

IF (NEXT .GT . NMK) GO TH 7

IF (X(NEXT+K) .EO. X(NEXT)) GO TO S

7 F(I) = (F(NEXT) — F(I))/(X(r+K) —

CONTINUE

10 NEXTP 1 = ~lrt X u ( 2 ,NEXTPl—l )

RETU RN

END

We do not bother to carry out here the extension of this routine because it is straight-

forward. ;side from an initial transfer of F (i ,jl to D(j,i) , all i,j, only two state-

ments ,
- 

PC I ) = F(I)/FLOATK

PCI) = (F(NEXT) — F(r))/(X(I+K) — X(I))

need to be put into a loop over the data sets , wi th  the d i f fe rence  X ( I + K )  — X C I )  formed

outside such a loop (and , of course , F replaced by D(j,.) )

We close wi th an example in which the “matrix ” B is three—dimensional , taking vectors

to matrices, viz,  complete cubic spl ine  in terpola t ion. A typical implementation of this

scheme (see, e.g., [2)) starts off with an array C, of dimension (4 ,n+l), which  contains

the following information initially:

CC 1, i) = f(x.), 1=1 n+l

CC2 ,l) = f’(x
1
), C(2,n+l) = f’(x

n+i
)

This says that the data (A f) about f in this scheme consist of the vector

(f(x
1
) f(x

÷1
), f ’ ( x

1
), f ’ ( x

n+i
))• After passing through a subroutine

SPLINE CX , C, N )

the array C contains  the c o e f f i c i e n t s  of the polynomial pieces which make up the inter-

po la t ing  cubic spline , i.e .,

C ( j , i )  = g~~~~U (x. )/(j—l)! , j=1 4 and i 1  n

For an extended version , it would seem reasonable to introduce a separate input array ,

F say , with

—14—
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(F(i) ,...,F (n+3() = (f(x
1
) . f (x

1
), f’ (x

1
) , f’ (x~~~1

))

The calling statement of the extended version then might be

SPLNEE CX , F, N+3 , M , C, N)

wi th  F and C dimens ioned  i n t e r n a l l y  as

F C N + 3 , M ) , C ( M ,4 , N )

Thus , i f  SPLNEE is used as SUB~ in the corollary above , then

n . = N+3 , r. = 4*N
1 1.

Consequently, bicubic spline interpola tion , on a mesh (x .)
1
~~

l by ~~~~~~~~ would be carried

out by

CALL SPLNEE (X, F, n+3, m+3, C, n)

CALL SPLNEE (Y , C, m+3, 4*n , F, m)

with F initially of dimension (n+3 , m+3) and con ta in ing  the data

fCx
1
,y

1
) f(X

1~
y
m+1

) f~~(x1~~~1
) f

y
(x

1~ Ym+i
)

=

f(x~~ 1
,y

1
) .... f(x~~ 1

,y~~ 1) f
y
CX n+1~ Y1

) f
y
CX
n+i .Ym+i

)

~x~~ l~
l’m+l) f

~~~
(x

1~ Vj
) 

~xy~~~i~~
’m-+i~

~x n+i ’
~
’i~ 

f(x ,y )f (x ,y )f (x ,y )

After  the two calls , F contains the polynomial coefficients of the interpolating

bicubic spline,

F ( i + l ,r,j+l ,s) = (~ /ax)
’(~ /ay)

3gCx ,v ) . i ,j=O 3

( 7 )
r l ,...,n , s=1 in

Note the difference between this way of storing the coefficients and the customary way

followed by the various available routines which return the coefficients in some array COEF

containing

—1 5—
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COEFCi ,j , r,s) = F (i, r ,),s)

The coefficient array F , organized as in (7), lends itself easily to evaluation h .  - s’ rid- . -

ed univariate evaluation routines .

In summary , the approach tO tensor products advocated here allows one t do ‘ u . -

ed programming work in the univariate context. The resulting programs are t h , -n  -,tru u-r

together to give or evaluate a tensor product interpolant (or , effect multip licatirn h - . a

tensor or Kronecker product of matrices) with an ease which mirrors the ease of t h e  m a the r r o-

tical construction of tensor products.
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